Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Commun ; 13(1): 719, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1692616

RESUMEN

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Lactamas/administración & dosificación , Leucina/administración & dosificación , Nitrilos/administración & dosificación , Prolina/administración & dosificación , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteasa Viral/administración & dosificación , Células A549 , Administración Oral , Animales , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , Chlorocebus aethiops , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Cricetinae , Humanos , Lactamas/farmacocinética , Leucina/farmacocinética , Mesocricetus , Nitrilos/farmacocinética , Prolina/farmacocinética , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , SARS-CoV-2/enzimología , SARS-CoV-2/fisiología , Células Vero , Inhibidores de Proteasa Viral/farmacocinética , Replicación Viral/efectos de los fármacos
2.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1675572

RESUMEN

BACKGROUND: There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection. METHODS: We used differentiated primary human airway epithelial cells at the air-liquid interface to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. RESULTS: We first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-CoV-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, oral camostat is rapidly metabolised in the circulation, with poor airway bioavailability. We therefore modelled local airway administration by applying camostat to the apical surface of differentiated airway cultures. We demonstrated that a brief exposure to topical camostat effectively restricts SARS-CoV-2 infection. CONCLUSION: These experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.


Asunto(s)
Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/administración & dosificación , Administración Tópica , Andrógenos/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , COVID-19/prevención & control , COVID-19/virología , Células Cultivadas , Células Epiteliales , Ésteres/farmacología , Expresión Génica , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Guanidinas/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Serina Endopeptidasas/genética , Transducción de Señal , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
3.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1662694

RESUMEN

Polyethyleneimine (PEI) induced immune responses were investigated in human bronchial epithelial (hBE) cells and mice. PEI rapidly induced ATP release from hBE cells and pretreatment with glutathione (GSH) blocked the response. PEI activated two conductive pathways, VDAC-1 and pannexin 1, which completely accounted for ATP efflux across the plasma membrane. Moreover, PEI increased intracellular Ca2+ concentration ([Ca2+]i), which was reduced by the pannexin 1 inhibitor, 10Panx (50 µM), the VDAC-1 inhibitor, DIDS (100 µM), and was nearly abolished by pretreatment with GSH (5 mM). The increase in [Ca2+]i involved Ca2+ uptake through two pathways, one blocked by oxidized ATP (oATP, 300 µM) and another that was blocked by the TRPV-1 antagonist A784168 (100 nM). PEI stimulation also increased IL-33 mRNA expression and protein secretion. In vivo experiments showed that acute (4.5 h) PEI exposure stimulated secretion of Th2 cytokines (IL-5 and IL-13) into bronchoalveolar lavage (BAL) fluid. Conjugation of PEI with ovalbumin also induced eosinophil recruitment and secretion of IL-5 and IL-13 into BAL fluid, which was inhibited in IL-33 receptor (ST2) deficient mice. In conclusion, PEI-induced oxidative stress stimulated type 2 immune responses by activating ATP-dependent Ca2+ uptake leading to IL-33 secretion, similar to allergens derived from Alternaria.


Asunto(s)
Adenosina Trifosfato/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Inmunidad/efectos de los fármacos , Nanopartículas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Polietileneimina/farmacología , Alérgenos/inmunología , Animales , Calcio/inmunología , Células Cultivadas , Citocinas/inmunología , Femenino , Humanos , Inmunidad/inmunología , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/inmunología , ARN Mensajero/inmunología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología
4.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1625612

RESUMEN

Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.


Asunto(s)
Niclosamida/administración & dosificación , Neumonía/tratamiento farmacológico , Sistema Respiratorio/efectos de los fármacos , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Asma/patología , COVID-19/complicaciones , Células Cultivadas , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Composición de Medicamentos , Humanos , Hidrogeles/química , Instilación de Medicamentos , Ratones , Microesferas , Moco/efectos de los fármacos , Moco/metabolismo , Nanosferas/administración & dosificación , Nanosferas/química , Niclosamida/química , Niclosamida/farmacocinética , Neumonía/patología , Polietilenglicoles/química , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Sistema Respiratorio/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Tráquea , Tratamiento Farmacológico de COVID-19
5.
Front Immunol ; 12: 743890, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1581344

RESUMEN

Background: Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective: To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods: Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results: Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1ß, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-ß expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion: Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-ß expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Asma , COVID-19 , Imiquimod/farmacología , Interferón beta/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Adulto , Anciano , Bronquios/efectos de los fármacos , Bronquios/inmunología , Bronquios/virología , Células Cultivadas , Femenino , Humanos , Interferón beta/inmunología , Masculino , Persona de Mediana Edad , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2
6.
Respir Res ; 22(1): 200, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1450712

RESUMEN

BACKGROUND: The first step in SARS-CoV-2 infection is binding of the virus to angiotensin converting enzyme 2 (ACE2) on the airway epithelium. Asthma affects over 300 million people world-wide, many of whom may encounter SARS-CoV-2. Epidemiologic data suggests that asthmatics who get infected may be at increased risk of more severe disease. Our objective was to assess whether maintenance inhaled corticosteroids (ICS), a major treatment for asthma, is associated with airway ACE2 expression in asthmatics. METHODS: Large airway epithelium (LAE) of asthmatics treated with maintenance ICS (ICS+), asthmatics not treated with ICS (ICS-), and healthy controls (controls) was analyzed for expression of ACE2 and other coronavirus infection-related genes using microarrays. RESULTS: As a group, there was no difference in LAE ACE2 expression in all asthmatics vs controls. In contrast, subgroup analysis demonstrated that LAE ACE2 expression was higher in asthmatics ICS+ compared to ICS‾ and ACE2 expression was higher in male ICS+ compared to female ICS+ and ICS‾ of either sex. ACE2 expression did not correlate with serum IgE, absolute eosinophil level, or change in FEV1 in response to bronchodilators in either ICS- or ICS+. CONCLUSION: Airway ACE2 expression is increased in asthmatics on long-term treatment with ICS, an observation that should be taken into consideration when assessing the use of inhaled corticosteroids during the pandemic.


Asunto(s)
Corticoesteroides/administración & dosificación , Enzima Convertidora de Angiotensina 2/metabolismo , Asma/tratamiento farmacológico , Receptores Virales/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Administración por Inhalación , Corticoesteroides/efectos adversos , Adulto , Enzima Convertidora de Angiotensina 2/genética , Asma/diagnóstico , Asma/enzimología , Asma/genética , COVID-19/enzimología , COVID-19/virología , Estudios de Casos y Controles , Femenino , Interacciones Huésped-Patógeno , Humanos , Masculino , Persona de Mediana Edad , Receptores Virales/genética , Mucosa Respiratoria/enzimología , SARS-CoV-2/patogenicidad , Factores de Tiempo , Regulación hacia Arriba , Internalización del Virus , Adulto Joven
7.
PLoS One ; 16(9): e0257784, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1440991

RESUMEN

Drug repurposing has the potential to bring existing de-risked drugs for effective intervention in an ongoing pandemic-COVID-19 that has infected over 131 million, with 2.8 million people succumbing to the illness globally (as of April 04, 2021). We have used a novel `gene signature'-based drug repositioning strategy by applying widely accepted gene ranking algorithms to prioritize the FDA approved or under trial drugs. We mined publically available RNA sequencing (RNA-Seq) data using CLC Genomics Workbench 20 (QIAGEN) and identified 283 differentially expressed genes (FDR<0.05, log2FC>1) after a meta-analysis of three independent studies which were based on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection in primary human airway epithelial cells. Ingenuity Pathway Analysis (IPA) revealed that SARS-CoV-2 activated key canonical pathways and gene networks that intricately regulate general anti-viral as well as specific inflammatory pathways. Drug database, extracted from the Metacore and IPA, identified 15 drug targets (with information on COVID-19 pathogenesis) with 46 existing drugs as potential-novel candidates for repurposing for COVID-19 treatment. We found 35 novel drugs that inhibit targets (ALPL, CXCL8, and IL6) already in clinical trials for COVID-19. Also, we found 6 existing drugs against 4 potential anti-COVID-19 targets (CCL20, CSF3, CXCL1, CXCL10) that might have novel anti-COVID-19 indications. Finally, these drug targets were computationally prioritized based on gene ranking algorithms, which revealed CXCL10 as the common and strongest candidate with 2 existing drugs. Furthermore, the list of 283 SARS-CoV-2-associated proteins could be valuable not only as anti-COVID-19 targets but also useful for COVID-19 biomarker development.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , SARS-CoV-2/genética , Antivirales/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/efectos de los fármacos , Epitelio/efectos de los fármacos , Humanos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Sistema Respiratorio/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad
8.
Commun Biol ; 4(1): 654, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1253994

RESUMEN

SARS-CoV-2 infection of human airway epithelium activates genetic programs leading to progressive hyperinflammation in COVID-19 patients. Here, we report on transcriptomes activated in primary airway cells by interferons and their suppression by Janus kinase (JAK) inhibitors. Deciphering the regulation of the angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, is paramount for understanding the cell tropism of SARS-CoV-2 infection. ChIP-seq for activating histone marks and Pol II loading identified candidate enhancer elements controlling the ACE2 locus, including the intronic dACE2 promoter. Employing RNA-seq, we demonstrate that interferons activate expression of dACE2 and, to a lesser extent, the genuine ACE2 gene. Interferon-induced gene expression was mitigated by the JAK inhibitors baricitinib and ruxolitinib, used therapeutically in COVID-19 patients. Through integrating RNA-seq and ChIP-seq data we provide an in-depth understanding of genetic programs activated by interferons, and our study highlights JAK inhibitors as suitable tools to suppress these in bronchial cells.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Interferones/farmacología , Inhibidores de las Cinasas Janus/farmacología , Activación Transcripcional/efectos de los fármacos , COVID-19/genética , Línea Celular , Humanos , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Transcriptoma/efectos de los fármacos
9.
Sci Rep ; 11(1): 371, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1242035

RESUMEN

Vaccines and therapeutics using in vitro transcribed mRNA hold enormous potential for human and veterinary medicine. Transfection agents are widely considered to be necessary to protect mRNA and enhance transfection, but they add expense and raise concerns regarding quality control and safety. We found that such complex mRNA delivery systems can be avoided when transfecting epithelial cells by aerosolizing the mRNA into micron-sized droplets. In an equine in vivo model, we demonstrated that the translation of mRNA into a functional protein did not depend on the addition of a polyethylenimine (PEI)-derived transfection agent. We were able to safely and effectively transfect the bronchial epithelium of foals using naked mRNA (i.e., mRNA formulated in a sodium citrate buffer without a delivery vehicle). Endoscopic examination of the bronchial tree and histology of mucosal biopsies indicated no gross or microscopic adverse effects of the transfection. Our data suggest that mRNA administered by an atomization device eliminates the need for chemical transfection agents, which can reduce the cost and the safety risks of delivering mRNA to the respiratory tract of animals and humans.


Asunto(s)
Caballos , Rociadores Nasales , ARN Mensajero/administración & dosificación , Mucosa Respiratoria , Animales , Animales Recién Nacidos , Células Cultivadas , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/efectos adversos , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/efectos adversos , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/veterinaria , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Nebulizadores y Vaporizadores/veterinaria , Polietileneimina/administración & dosificación , Polietileneimina/química , ARN Mensajero/efectos adversos , ARN Mensajero/farmacocinética , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Transcripción Genética , Transfección/métodos , Transfección/veterinaria , Vacunas de ADN/administración & dosificación , Vacunas de ADN/efectos adversos , Vacunas de ADN/farmacocinética
10.
Theranostics ; 11(13): 6193-6213, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1224320

RESUMEN

Rationale: The pandemic caused by the novel coronavirus SARS-CoV-2 is advancing rapidly. In particular, the number of severe courses of the disease is still dramatically high. An efficient drug therapy that helps to improve significantly the fatal combination of damages in the airway epithelia, in the extensive pulmonary microvascularization and finally multiorgan failure, is missing. The physiological, inorganic polymer, polyphosphate (polyP) is a molecule which could prevent the initial phase of the virus life cycle, the attachment of the virus to the target cells, and improve the epithelial integrity as well as the mucus barrier. Results: Surprisingly, polyP matches perfectly with the cationic groove on the RBD. Subsequent binding studies disclosed that polyP, with a physiological chain length of 40 phosphate residues, abolishes the binding propensity of the RBD to the ACE2 receptor. In addition to this first mode of action of polyP, this polymer causes in epithelial cells an increased gene expression of the major mucins in the airways, of MUC5AC and MUC1, as well as a subsequent glycoprotein production. MUC5AC forms a gel-like mucus layer trapping inhaled particles which are then transported out of the airways, while MUC1 constitutes the periciliary liquid layer and supports ciliary beating. As a third mode of action, polyP undergoes enzymatic hydrolysis of the anhydride bonds in the airway system by alkaline phosphatase, releasing metabolic energy. Conclusions: This review summarizes the state of the art of the biotherapeutic potential of the polymer polyP and the findings from basic research and outlines future biomedical applications.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Pandemias/prevención & control , Polifosfatos/farmacología , Animales , Antivirales/química , Antivirales/uso terapéutico , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Ratones , Mucinas/metabolismo , Nanopartículas/química , Polifosfatos/química , Polifosfatos/uso terapéutico , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Acoplamiento Viral/efectos de los fármacos
11.
mBio ; 12(2)2021 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1206005

RESUMEN

SARS-CoV-2 infection causing the COVID-19 pandemic calls for immediate interventions to avoid viral transmission, disease progression, and subsequent excessive inflammation and tissue destruction. Primary normal human bronchial epithelial cells are among the first targets of SARS-CoV-2 infection. Here, we show that ColdZyme medical device mouth spray efficiently protected against virus entry, excessive inflammation, and tissue damage. Applying ColdZyme to fully differentiated, polarized human epithelium cultured at an air-liquid interphase (ALI) completely blocked binding of SARS-CoV-2 and increased local complement activation mediated by the virus as well as productive infection of the tissue model. While SARS-CoV-2 infection resulted in exaggerated intracellular complement activation immediately following infection and a drop in transepithelial resistance, these parameters were bypassed by single pretreatment of the tissues with ColdZyme mouth spray. Crucially, our study highlights the importance of testing already evaluated and safe drugs such as ColdZyme mouth spray for maintaining epithelial integrity and hindering SARS-CoV-2 entry within standardized three-dimensional (3D) in vitro models mimicking the in vivo human airway epithelium.IMPORTANCE Although our understanding of COVID-19 continuously progresses, essential questions regarding prophylaxis and treatment remain open. A hallmark of severe SARS-CoV-2 infection is a hitherto-undescribed mechanism leading to excessive inflammation and tissue destruction associated with enhanced pathogenicity and mortality. To tackle the problem at the source, transfer of SARS-CoV-2, subsequent binding, infection, and inflammatory responses have to be avoided. In this study, we used fully differentiated, mucus-producing, and ciliated human airway epithelial cultures to test the efficacy of ColdZyme medical device mouth spray in terms of protection from SARS-CoV-2 infection. Importantly, we found that pretreatment of the in vitro airway cultures using ColdZyme mouth spray resulted in significantly shielding the epithelial integrity, hindering virus binding and infection, and blocking excessive intrinsic complement activation within the airway cultures. Our in vitro data suggest that ColdZyme mouth spray may have an impact in prevention of COVID-19.


Asunto(s)
Antivirales/farmacología , Mucosa Respiratoria/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Bronquios/citología , COVID-19/prevención & control , COVID-19/virología , Complemento C3/inmunología , Células Epiteliales , Humanos , Inmunidad Innata/efectos de los fármacos , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Vaporizadores Orales , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , SARS-CoV-2/fisiología , Acoplamiento Viral/efectos de los fármacos
12.
J Virol ; 95(4)2021 01 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1054610

RESUMEN

Among seven coronaviruses that infect humans, three (severe acute respiratory syndrome coronavirus [SARS-CoV], Middle East respiratory syndrome coronavirus [MERS-CoV], and the newly identified severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) are associated with a severe, life-threatening respiratory infection and multiorgan failure. We previously proposed that the cationically modified chitosan N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) is a potent inhibitor of human coronavirus NL63 (HCoV-NL63). Next, we demonstrated the broad-spectrum antiviral activity of the compound, as it inhibited all low-pathogenicity human coronaviruses (HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1). Here, using in vitro and ex vivo models of human airway epithelia, we show that HTCC effectively blocks MERS-CoV and SARS-CoV-2 infection. We also confirmed the mechanism of action for these two viruses, showing that the polymer blocks the virus entry into the host cell by interaction with the S protein.IMPORTANCE The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the health care measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of an HTCC compound, previously developed by us, which may be used as a potential inhibitor of currently circulating highly pathogenic coronaviruses-SARS-CoV-2 and MERS-CoV.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Quitosano/análogos & derivados , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , COVID-19/epidemiología , COVID-19/virología , Quitosano/farmacología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pandemias , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
13.
Mar Drugs ; 18(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: covidwho-977761

RESUMEN

The mucus layer of the nasopharynx and bronchial epithelium has a barrier function against inhaled pathogens such as the coronavirus SARS-CoV-2. We recently found that inorganic polyphosphate (polyP), a physiological, metabolic energy (ATP)-providing polymer released from blood platelets, blocks the binding of the receptor binding domain (RBD) to the cellular ACE2 receptor in vitro. PolyP is a marine natural product and is abundantly present in marine bacteria. Now, we have approached the in vivo situation by studying the effect of polyP on the human alveolar basal epithelial A549 cells in a mucus-like mucin environment. These cells express mucins as well as the ectoenzymes alkaline phosphatase (ALP) and adenylate kinase (ADK), which are involved in the extracellular production of ATP from polyP. Mucin, integrated into a collagen-based hydrogel, stimulated cell growth and attachment. The addition of polyP to the hydrogel significantly increased cell attachment and also the expression of the membrane-tethered mucin MUC1 and the secreted mucin MUC5AC. The increased synthesis of MUC1 was also confirmed by immunostaining. This morphogenetic effect of polyP was associated with a rise in extracellular ATP level. We conclude that the nontoxic and non-immunogenic polymer polyP could possibly also exert a protective effect against SARS-CoV-2-cell attachment; first, by stimulating the innate antiviral response by strengthening the mucin barrier with its antimicrobial proteins, and second, by inhibiting virus attachment to the cells, as deduced from the reduction in the strength of binding between the viral RBD and the cellular ACE2 receptor.


Asunto(s)
Organismos Acuáticos/metabolismo , Productos Biológicos/farmacología , COVID-19/prevención & control , Polifosfatos/farmacología , Mucosa Respiratoria/efectos de los fármacos , Células A549 , Bacterias/metabolismo , Productos Biológicos/uso terapéutico , COVID-19/virología , Humanos , Inmunidad Innata/efectos de los fármacos , Mucina 5AC/metabolismo , Mucina-1/metabolismo , Polifosfatos/metabolismo , Polifosfatos/uso terapéutico , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Metabolismo Secundario , Acoplamiento Viral/efectos de los fármacos
14.
Aging (Albany NY) ; 12(22): 22425-22444, 2020 11 22.
Artículo en Inglés | MEDLINE | ID: covidwho-969889

RESUMEN

With the current COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for new therapies and prevention strategies that can help curtail disease spread and reduce mortality. The inhibition of viral entry and thus spread is a plausible therapeutic avenue. SARS-CoV-2 uses receptor-mediated entry into a human host via the angiotensin-converting enzyme 2 (ACE2), which is expressed in lung tissue as well as the oral and nasal mucosa, kidney, testes and gastrointestinal tract. The modulation of ACE2 levels in these gateway tissues may be an effective strategy for decreasing disease susceptibility. Cannabis sativa, especially those high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been found to alter gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. However, its effects on ACE2 expression remain unknown. Working under a Health Canada research license, we developed over 800 new C. sativa cultivars and hypothesized that high-CBD C. sativa extracts may be used to down-regulate ACE2 expression in target COVID-19 tissues. Using artificial 3D human models of oral, airway and intestinal tissues, we identified 13 high-CBD C. sativa extracts that decrease ACE2 protein levels. Some C. sativa extracts down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV-2 entry into host cells. While our most effective extracts require further large-scale validation, our study is important for future analyses of the effects of medical cannabis on COVID-19. The extracts of our most successful novel high-CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the prevention/treatment of COVID-19 as an adjunct therapy.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , COVID-19/prevención & control , Cannabis/química , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , COVID-19/virología , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Simulación por Computador , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Modelos Anatómicos , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/metabolismo , Mucosa Bucal/virología , Pandemias/prevención & control , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
15.
PLoS One ; 15(12): e0242536, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-965821

RESUMEN

Retinoic acid (RA) has been shown to improve epithelial and endothelial barrier function and development and even suppress damage inflicted by inflammation on these barriers through regulating immune cell activity. This paper thus sought to determine whether RA could improve baseline barrier function and attenuate TNF-α-induced barrier leak in the human bronchial epithelial cell culture model, 16HBE14o- (16HBE). We show for the first time that RA increases baseline barrier function of these cell layers indicated by an 89% increase in transepithelial electrical resistance (TER) and 22% decrease in 14C-mannitol flux. A simultaneous, RA-induced 70% increase in claudin-4 attests to RA affecting the tight junctional (TJ) complex itself. RA was also effective in alleviating TNF-α-induced 16HBE barrier leak, attenuating 60% of the TNF-α-induced leak to 14C-mannitol and 80% of the leak to 14C-inulin. Interleukin-6-induced barrier leak was also reduced by RA. Treatment of 16HBE cell layers with TNF-α resulted in dramatic decrease in immunostaining for occludin and claudin-4, as well as a downward "band-shift" in occludin Western immunoblots. The presence of RA partially reversed TNF-α's effects on these select TJ proteins. Lastly, RA completely abrogated the TNF-α-induced increase in ERK-1,2 phosphorylation without significantly decreasing the TNF-driven increase in total ERK-1,2. This study suggests RA could be effective as a prophylactic agent in minimizing airway barrier leak and as a therapeutic in preventing leak triggered by inflammatory cascades. Given the growing literature suggesting a "cytokine storm" may be related to COVID-19 morbidity, RA may be a useful adjuvant for use with anti-viral therapies.


Asunto(s)
Bronquios/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Tretinoina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios/farmacología , Bronquios/citología , Bronquios/metabolismo , Línea Celular , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Permeabilidad/efectos de los fármacos , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
16.
CPT Pharmacometrics Syst Pharmacol ; 10(2): 89-99, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-966959

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak initiated the global coronavirus disease 2019 (COVID-19) pandemic resulting in 42.9 million confirmed infections and > 1.1 million deaths worldwide as of October 26, 2020. Remdesivir is a broad-spectrum nucleotide prodrug shown to be effective against enzootic coronaviruses. The pharmacokinetics (PKs) of remdesivir in plasma have recently been described. However, the distribution of its active metabolite nucleoside triphosphate (NTP) to the site of pulmonary infection is unknown in humans. Our objective was to use existing in vivo mouse PK data for remdesivir and its metabolites to develop a mechanism-based model to allometrically scale and simulate the human PK of remdesivir in plasma and NTP in lung homogenate. Remdesivir and GS-441524 concentrations in plasma and total phosphorylated nucleoside concentrations in lung homogenate from Ces1c-/- mice administered 25 or 50 mg/kg of remdesivir subcutaneously were simultaneously fit to estimate PK parameters. The mouse PK model was allometrically scaled to predict human PK parameters to simulate the clinically recommended 200 mg loading dose followed by 100 mg daily maintenance doses administered as 30-minute intravenous infusions. Simulations of unbound remdesivir concentrations in human plasma were below 2.48 µM, the 90% maximal inhibitory concentration for SARS-CoV-2 inhibition in vitro. Simulations of NTP in the lungs were below high efficacy in vitro thresholds. We have identified a need for alternative dosing strategies to achieve more efficacious concentrations of NTP in human lungs, perhaps by reformulating remdesivir for direct pulmonary delivery.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacocinética , Tratamiento Farmacológico de COVID-19 , Modelos Animales , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/uso terapéutico , Alanina/farmacocinética , Alanina/uso terapéutico , Animales , Antivirales/uso terapéutico , COVID-19/metabolismo , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Especificidad de la Especie
17.
Drug Discov Ther ; 14(5): 256-258, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: covidwho-895583

RESUMEN

In the ongoing coronavirus diseases-2019 (COVID-19) crisis that caused immense suffering and deaths, the choice of therapy for the prevention and life-saving conditions must be based on sound scientific evidence. Uncertainty and apprehension are exacerbated in people using angiotensin-converting enzyme (ACE) inhibitors to control their comorbidities such as hypertension and diabetes. These drugs are reported to result in unfavorable outcome as they tend to increase the levels of ACE2 which mediates the entry of SARS-CoV-2. Amiloride, a prototypic inhibitor of epithelial sodium channels (ENaC) can be an ideal candidate for COVID-19 patients, given its ACE reducing and cytosolic pH increasing effects. Moreover, its potassium-sparing and anti-epileptic activities make it a promising alternative or a combinatorial agent.


Asunto(s)
Amilorida/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Bloqueadores del Canal de Sodio Epitelial/farmacología , Neumonía Viral/tratamiento farmacológico , Mucosa Respiratoria/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Células A549 , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/patogenicidad , COVID-19 , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/enzimología , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/virología , Regulación hacia Abajo , Interacciones Huésped-Patógeno , Humanos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/enzimología , Neumonía Viral/virología , Receptores Virales/metabolismo , Mucosa Respiratoria/enzimología , Mucosa Respiratoria/virología , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
18.
mBio ; 11(5)2020 10 20.
Artículo en Inglés | MEDLINE | ID: covidwho-883314

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Lipopéptidos/farmacología , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/química , Betacoronavirus/química , Betacoronavirus/fisiología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Células HEK293 , Humanos , Lipopéptidos/química , Fusión de Membrana/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , Dominios Proteicos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Células Vero
19.
EMBO J ; 39(21): e106057, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: covidwho-846583

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 and has spread across the globe. SARS-CoV-2 is a highly infectious virus with no vaccine or antiviral therapy available to control the pandemic; therefore, it is crucial to understand the mechanisms of viral pathogenesis and the host immune responses to SARS-CoV-2. SARS-CoV-2 is a new member of the betacoronavirus genus like other closely related viruses including SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Both SARS-CoV and MERS-CoV have caused serious outbreaks and epidemics in the past eighteen years. Here, we report that one of the interferon-stimulated genes (ISGs), cholesterol 25-hydroxylase (CH25H), is induced by SARS-CoV-2 infection in vitro and in COVID-19-infected patients. CH25H converts cholesterol to 25-hydrocholesterol (25HC) and 25HC shows broad anti-coronavirus activity by blocking membrane fusion. Furthermore, 25HC inhibits USA-WA1/2020 SARS-CoV-2 infection in lung epithelial cells and viral entry in human lung organoids. Mechanistically, 25HC inhibits viral membrane fusion by activating the ER-localized acyl-CoA:cholesterol acyltransferase (ACAT) which leads to the depletion of accessible cholesterol from the plasma membrane. Altogether, our results shed light on a potentially broad antiviral mechanism by 25HC through depleting accessible cholesterol on the plasma membrane to suppress virus-cell fusion. Since 25HC is a natural product with no known toxicity at effective concentrations, it provides a potential therapeutic candidate for COVID-19 and emerging viral diseases in the future.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Colesterol/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Mucosa Respiratoria/virología , Esteroide Hidroxilasas/farmacología , Internalización del Virus/efectos de los fármacos , Acetil-CoA C-Acetiltransferasa/metabolismo , Animales , COVID-19 , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Activación Enzimática/efectos de los fármacos , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Organoides/virología , Pandemias , Mucosa Respiratoria/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , SARS-CoV-2 , Células Vero , Tratamiento Farmacológico de COVID-19
20.
Front Immunol ; 11: 1959, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-732901

RESUMEN

The lung is the vital target organ of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the majority of patients the most active virus replication seems to be found in the upper respiratory tract, severe cases however suffer from SARS-like disease associated with virus replication in lung tissues. Due to the current lack of suitable anti-viral drugs the induction of protective immunity such as neutralizing antibodies in the lung is the key aim of the only alternative approach-the development and application of SARS-CoV-2 vaccines. However, past experience from experimental animals, livestock, and humans showed that induction of immunity in the lung is limited following application of vaccines at peripheral sides such as skin or muscles. Based on several considerations we therefore propose here to consider the application of a Modified Vaccinia virus Ankara (MVA)-based vaccine to mucosal surfaces of the respiratory tract as a favorable approach to combat COVID-19.


Asunto(s)
Betacoronavirus/química , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Virus Vaccinia/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Administración a través de la Mucosa , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Bronquios/inmunología , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Inmunoglobulina A/metabolismo , Tejido Linfoide/inmunología , Células Plasmáticas/inmunología , Neumonía Viral/virología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , SARS-CoV-2 , Linfocitos T/inmunología , Vacunación , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA